多数人的观念里,人工智能的发展应该只需要工程师在前沿技术上不断突进,而事实是, AI 训练的背后是庞大的劳动力支撑。雷锋网了解,在自动驾驶的实现过程中,图片标记就是一项需要密集劳动的浩荡工程。
当朋友们翻杂志或在 Ins 上刷屏的时候,Shari Forrest 则打开了手机里的 APP 开始训练人工智能。
Forrest 住在圣路易斯城郊,今年 54 岁,她不是工程师,也不是程序员,靠写教科书谋生。在平时需要休息的闲碎时间里,她会登录 Mighty AI,标注行人和垃圾桶,以及其它你不想让无人车撞上的东西。“如果在我干坐着等医生的任命时,还能赚几个钱,那何乐而不为呢。”
对 Forrest 来说,这是一桩愉快的消遣,而其背后的本质事实是,自动驾驶时代正在到来。
支撑自动驾驶训练所需的数据容量超乎想象。虽然谷歌和通用这些公司很少提及,但他们耀眼的机器和数据中心却依赖于全世界越来越多像 Forrest 这样的人。
正如你听到的那样,如今,几乎每个人都认为 AI 势必带来一场全面革命。汽车厂商们尤其乐意强调这些,因为机器人车将提高安全性,减少拥堵,让生活更便捷。“汽车是机器学习使用热度最高也是最先进的领域之一,” Mighty AI CEO Matt Bencke 说到。虽然没有点名,但他表示公司正在合作的汽车厂商至少有 10 家。
如何教机器学会开车是一个很大的挑战。美国车辆管理局的规则树立了一个起点,提供了一些基础概念,比如“行人量”。但行人到底是什么样子?人一般有两条腿,不过,对于机器来说,穿上短裙后的两条腿就和一条腿一样,而且坐轮椅的人该怎么识别?推婴儿车的呢?前面的障碍物究竟是一个小孩,还是一个大点的狗,或者一个垃圾桶?
无论如何,一个搭载人工智能的汽车必须学会辨认这些,理解这个经常连人类也理解不了的世界。对于人来说这是第二本性,但放在车辆身上就截然不同了。
Forrest 和其他 200000 Mighty AI 用户
自动驾驶原型车的摄像头几乎可以捕捉所有环境和情景下的图像。厂商和科技公司将数百万张图片发给 Mighty AI 这样的公司做标记,也正是后者促成了这个在照片中识别万物的游戏。听起来或许很乏味,但 Mighty AI 这类公司正是通过这种 10 分钟的轻便任务来维持自身运转的。“这更像一个休闲游戏,而不是体力劳动,” Bencke 说到。钱财的奖励虽然微不足道,却也起着一定作用。
Forrest 小心翼翼地在每一幅图里的每个人旁边画一个框,然后是每一辆正在接近的车、每辆车的轮胎。之后,她再将它们放大,逐像素地确认,细致描绘出树的轮廓。点击,点击,点击。她会选择不同颜色的指示器,将交通灯、电线杆、路锥调亮。所有步骤完成之后,这个场景就以机器可以理解的语言标注出来了。工程师称之为“语义分割”。
对准确性的要求决定了这项工作注定是辛苦的,但 Forrest 却表示很享受这个过程:“就像很多人喜欢涂色一样,这是一项可以让人放松的工作。”
这些以百万计的标注图片可以帮助 AI 识别各类事物,帮助其理解诸如人是什么样子这类问题。最后,AI 将变得足够聪明,能够自行在行人旁边画框。 像 Forrest 这样的工作人员则可以帮助检查 AI 的工作。“一段时间以后,AI 会足够聪明,能够可靠地识别事物。” Kangaroos 说到。
将这些愿景寄托到非专业人员身上看起来可能很奇怪,但这仍是训练 AI 的有效方式。“这很可能是唯一的路径。”在 USC 信息科学机构研究机器视觉的 Premkumar Natarajan 说到。他在这一领域有超过二十年的经验。
虽然在这个所谓的无监督学习领域已经有一些研究,电脑可以以最小的投入进行学习,但眼下人工智能的智能程度仍取决于它训练的数据质量。
Bencke 称,他的平台还可以使用自己的机器学习,判定 Mighty AI 上每个成员各自最擅长的东西。并没有人因为从事这项重要的工作致富,但是对 Forrest 来说,这不是重点。
她说,自己将去年在平台挣到的 300 美金花到了网购上。她从来没见过自动驾驶车辆,更不要说亲自乘坐一辆这样的车,但意识到自己在帮助这些车变得更聪明,让她在进行这项工作的时候更相信科技的力量。